
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 5, SEPTEMBER 2015 1617

Feature Selection Based on the SVM Weight
Vector for Classification of Dementia

Esther E. Bron, Marion Smits, Wiro J. Niessen, and Stefan Klein, for the Alzheimer’s Disease Neuroimaging Initiative

Abstract—Computer-aided diagnosis of dementia using a sup-
port vector machine (SVM) can be improved with feature selec-
tion. The relevance of individual features can be quantified from
the SVM weights as a significance map (p-map). Although these
p-maps previously showed clusters of relevant voxels in dementia-
related brain regions, they have not yet been used for feature selec-
tion. Therefore, we introduce two novel feature selection methods
based on p-maps using a direct approach (filter) and an iterative ap-
proach (wrapper). To evaluate these p-map feature selection meth-
ods, we compared them with methods based on the SVM weight
vector directly, t-statistics, and expert knowledge. We used MRI
data from the Alzheimer’s disease neuroimaging initiative classify-
ing Alzheimer’s disease (AD) patients, mild cognitive impairment
(MCI) patients who converted to AD (MCIc), MCI patients who
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did not convert to AD (MCInc), and cognitively normal controls
(CN). Features for each voxel were derived from gray matter mor-
phometry. Feature selection based on the SVM weights gave better
results than t-statistics and expert knowledge. The p-map meth-
ods performed slightly better than those using the weight vector.
The wrapper method scored better than the filter method. Re-
cursive feature elimination based on the p-map improved most
for AD-CN: the area under the receiver-operating-characteristic
curve (AUC) significantly increased from 90.3% without feature
selection to 92.0% when selecting 1.5%–3% of the features. This
feature selection method also improved the other classifications:
AD-MCI 0.1% improvement in AUC (not significant), MCI-CN
0.7%, and MCIc-MCInc 0.1% (not significant). Although the per-
formance improvement due to feature selection was limited, the
methods based on the p-map generally had the best performance,
and were therefore better in estimating the relevance of individual
features.

Index Terms—Computer-aided diagnosis, dementia, feature se-
lection, recursive feature elimination (RFE), significance maps,
support vector machine (SVM).

I. INTRODUCTION

D EMENTIA affects 35.6 million individuals over 60 years
of age worldwide as was estimated in 2010 [1]. Many of

these individuals are never diagnosed [2], while an early and
accurate diagnosis is important for providing optimal care. Ac-
curate diagnostic methods are also important for research into
understanding the disease process and developing new treat-
ments [3], [4].

Computer-aided diagnosis methods can aid the diagnosis of
neurodegenerative disease as they are trained on reference data
and, therefore, potentially make use of subtle group differences
that are not noted during qualitative visual inspection of brain
imaging data [5]. These methods apply machine learning ap-
proaches to classify two or more classes, e.g., to distinguish
Alzheimer’s disease (AD) patients from normal (CN) controls.
For this classification, the machine-learning methods are trained
on features derived from imaging or related data.

For dementia diagnosis based on structural MRI, a survey
of all recent work showed that the classification accuracy for
AD-CN generally is 80%–90% [6]. Many of the dementia clas-
sification methods used voxel-wise approaches based on brain
morphometric analyses [6]–[8]. These voxel-wise approaches
provide high-dimensional feature vectors of sizes up to ∼1 mil-
lion features, while typically the sample size of such studies
is much lower, in the order of hundreds, which can result in
suboptimal performances. Therefore, researchers have explored
feature selection methods for reducing dimensionality and im-
proving performance [8], [9].

Although there exist many data-driven methods for feature
selection, it can be difficult to choose the best method as the
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effectiveness depends on the specific application and dataset
[10]. Most feature selection methods rank the features based on
a specific criterion that reflects their degree of relevance [11].
These feature selection methods can be divided into three main
types of methods [6], [12]: 1) filter methods, 2) wrapper meth-
ods, and 3) embedded methods. Filter methods perform feature
selection as a preprocessing step prior to the classification, and
compute some relevance measure on the training set to remove
the least relevant features from the dataset. A commonly used
filter method is to perform a t-test for every feature [6], [9],
[13]–[15]. Wrapper methods are iterative methods, in which the
classifier is trained several times using the feedback from ev-
ery iteration to select a subset of features for the next iteration.
A well-known wrapper method is recursive feature elimination
(RFE) [16], in which the features that are ranked the lowest are
iteratively removed. For embedded methods, the feature selec-
tion is incorporated in the classifier, and selection is performed
during training. In this study, we focus on filter and wrapper
methods.

The support vector machine (SVM) classifier is frequently
used for classification in medical imaging including computer-
aided diagnosis in MR brain imaging [6], [8], [17], [18]. In
training an SVM classifier, a weight vector is computed on the
training data. This weight vector can be used as an important
measure of the features to the classifier. Therefore, it can serve
as ranking measure for feature selection that can be used in a
filter method or in a wrapper method. Feature selection using
the SVM weight vector has been studied extensively in machine
learning research [10], [16], [19]–[21] and has also been applied
in neuroimaging [9], [22], [23].

The ranking of features based on the SVM weight vector may
be suboptimal since the weights are not the result of a statistical
test, and, therefore, do not necessarily reflect the significance
of a specific feature [24]. Using permutation testing, the SVM
weight vector can be calibrated by taking into account the null
distribution of the weights [17], [18]. The permutation test com-
putes a p-value for every feature indicating the significance of
its contribution to the classifier. As every feature represents a
voxel, these p-values can be combined into a significance map
(p-map) which reflects the regions consistently influencing the
classifier. In previous work, we showed that these p-maps find
clusters of significantly different voxels in regions known to
be involved in neurodegenerative diseases underlying dementia
[25]. Based on these results, it seems attractive to use the p-map
for feature selection.

The SVM p-map has not been used for feature selection be-
fore, probably because SVM p-map computation with permu-
tation testing is time consuming. However, a recently published
method for analytic estimation of significance maps [24] makes
it computationally feasible to use p-maps for feature selection
in both a filter and a wrapper approach. Like feature selection
on the SVM weight vector, the p-map methods are purely data
driven and are from a methodological point of view closely
linked to the SVM classifier rendering interpretation clear.

In this paper, we validated several feature selection methods
that are based on the weight vector of the SVM classifier. We
evaluated feature selection using two relevance measures: 1) the
SVM weight vector and 2) the SVM p-maps estimated with the

analytic implementation as described in [24]. For both relevance
measures, we evaluated filter and wrapper feature selection. We
compared these methods to methods based on t-statistics and a
method based on prior knowledge. For evaluation, we performed
a classification experiment of AD, mild cognitive impairment
(MCI), and CN based on T1-weighted MR scans using data
from the Alzheimer’s disease neuroimaging initiative (ADNI).

This paper is an extension of our conference paper [26], in
which we presented an initial evaluation of the filter p-map fea-
ture selection method. That work was limited to comparison
with the t-test and prior knowledge. We used a fixed thresh-
old (α = 0.05) on the p-map and t-test to select the significant
features and compared the methods using different numbers of
selected features. For the more thorough validation in this paper,
we added other SVM-based methods and an additional method
based on t-statistics to the comparison. We also analyzed the
features that the methods selected. Finally, we now keep the
number of features constant across methods.

II. METHODS

A. Support Vector Machine

The SVM classifier is based on maximization of the margin
around the hyperplane (wT x + b) separating samples of the dif-
ferent classes [27]. Each sample i = 1, . . . ,m consists of an N -
dimensional feature vector xi and a class label yi ∈ {+1,−1}.
The maximization of the margin corresponds to the following
minimization:

w∗, b∗, ξ∗ = arg min
w,b,ξ

1
2
||w||2 + C

m∑

i=1

ξi

s.t. yi(wT xi + b) ≥ 1 − ξi ; ξi ≥ 0; i = 1, ...,m. (1)

In this soft-margin SVM equation, ξi is a penalty for misclassi-
fication or classification within the margin. Parameter C sets the
weight of this penalty. The resulting weight vector w∗ encodes
the contributions of all features to the classifier.

B. Significance of the SVM Weight Vector

The p-value quantifies the significance of each feature’s con-
tribution to the SVM classifier. As every feature is a voxel, the p-
values can be combined into a p-map image. To obtain p-values,
permutation testing can be used to estimate a null distribution
on the weight vector (w) [17], [18]. Permutation testing, how-
ever, requires the training of a large number of SVM classifiers,
which renders it very time consuming for high-dimensional fea-
ture vectors.

A faster solution for estimation of the SVM p-map was pre-
sented by Gaonkar and Davatzikos [24] who derived an analytic
approximation of the null distribution of w. For this approxima-
tion, the SVM classifier is simplified by making two assump-
tions. First, under the assumption that the classes are separable,
which is true if many features and a relatively small number
of samples are used, the soft-margin SVM can be simplified to
a hard-margin SVM, which does not use the misclassification
penalty ξi . Second, under the assumption that for most permu-
tations most samples will be support vectors, the hard-margin
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SVM can be simplified further to a least-squares SVM, which
has a closed-form solution w = Ky, with

K = XT
[(

XXT
)−1

+
(
XXT

)−1

J
(
−JT (XXT )−1J

)−1
JT

(
XXT

)−1
]

(2)

where J is a column matrix of ones and the matrix X contains
one feature vector in each row. Given a sufficiently high number
of subjects, the probability density function of every feature (j)
can be approximated with a Gaussian distribution

wj
d→N

(
(2q − 1)

m∑

i=1

Kij ,
(
4q − 4q2)

m∑

i=1

K2
ij

)
(3)

where q is the fraction of the data with class label yi = +1. A
p-value for each feature is obtained by testing w∗ against the
analytic null distribution in (3). The experiments by Gaonkar
and Davatzikos [24] showed that this approximation results in
p-maps that are very similar to those obtained with permutation
testing.

C. Feature Selection Using the SVM Weight Vector

In this study, we evaluated feature selection methods that are
based on the SVM weight vector w∗. Since these feature se-
lection methods use information on which features contribute
most to the classifier, they are expected to reduce features in a
meaningful way. Intuitively, using such an SVM-based feature
selection method prior to SVM classification is an attractive ap-
proach, as in this way, the feature selection and the classification
use the same decision model.

We defined four methods for feature selection on the SVM
weights: 1) a filter method on the weight vector (W-map), 2) a
wrapper method on the weight vector (RFE W-map), 3) a filter
method on the significance of the weight vector (P-map), and
4) a wrapper method on the significance of the weight vector
(RFE P-map). These methods are detailed as follows.

1) SVM Weight Map (W-Map): The SVM weight vector w∗

encodes the contributions of all features to the classifier. The
highest absolute weights |w∗

j | are assigned to the features j
that have the largest contribution in the classification. The W-
map image is used in a filter-based feature selection method by
simply selecting the features with the highest absolute weights.

2) RFE Using the SVM Weight Map (RFE W-Map): RFE
[16] is a feature selection method originally developed in ge-
netics, but it has been used in many applications including
computer-aided diagnosis based on MRI [9]. RFE is not specif-
ically developed for the SVM classifier, but it can use the SVM
weight vector as its elimination criterion. Instead of “naively”
ranking the weights like in the W-map method, RFE uses a wrap-
per approach that removes a subset of features with the lowest
classifier weights in every iteration. The approach is a form of
backward feature elimination [28], but it removes multiple fea-
tures at the same time to make the approach computationally
feasible for high-dimensional feature spaces.

Similar to W-map, RFE W-map uses the SVM weight vector
as its relevance measure. For genetic data, Guyon et al. [16]

showed that RFE W-map outperformed the W-map approach.
Unlike W-map, which orders the features on their individual
relevance, RFE takes usefulness of the features into account
by looking at feature sets instead of individual features. This
is most important when the features are highly correlated. In
that case, the feature selection methods should not select highly
correlated features that have no additional information, which a
filter method such as W-map might do. However, because of the
iterative approach, RFE W-map is more likely to select features
that are complementary to other features, but that might not
individually have the highest relevance [16].

In our application, we use features based on voxel-wise mor-
phometry of the gray matter (GM). These features are expected
to be highly correlated, especially between neighboring voxels.
Therefore, RFE W-map is expected to have some advantage over
W-map in our application.

3) SVM Significance Map (P-Map): The W-map and RFE
methods are both based on w∗, but do not perform any statistical
testing. The analytic method to estimate the SVM p-map, which
we explained in Section II-B, performs a significance test for
each feature in the SVM classifier. In a previous conference
paper, we introduced this p-map as a novel method for feature
selection [26]. This method uses the p-map to select features that
are most significant for the final classification. The advantage
of this method over W-map is that it takes into account the null
distribution of w∗. This calibrates the weights and can make the
ordering of the features more robust.

4) RFE Using the SVM Significance Map (RFE P-Map):
This method combines the advantages of the previously de-
scribed methods, performing both a wrapper approach and sta-
tistical testing. RFE P-map applies RFE to the SVM p-map. To
the best of our knowledge, this method has not been proposed
before.

D. Feature Selection Using t-Statistics

We compared the SVM weight vector feature selection meth-
ods with methods that use a more commonly applied relevance
measure: t-statistics. These methods perform a t-test on the train-
ing set for every voxel. The resulting t-statistic can then be used
in a filter-based approach (T-test). In addition, we can compute
the t-statistic in a permutation test similar to P-map. While the
standard t-test makes the assumption that the data has a Gaus-
sian distribution and is independently drawn, the permutation
t-test does not make these assumptions. Therefore, we apply
this randomized t-statistic in addition as a filter (T-map). For
the permutation testing on the t-statistic, no analytic derivation
is available; hence, this method is more time consuming than
the other described methods. A wrapper-based approach, such
as RFE, would have no added value for the t-statistics criteria,
since these measures are univariate: the t-statistic is computed
for each feature individually and does not give different results
over several iterations.

E. Feature Selection Using Prior Knowledge (ROI)

The last feature selection method is region-of-interest (ROI)
selection based on prior knowledge. In this method, we use the
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Fig. 1. ROIs for feature selection based on previous knowledge adapted
from [9].

voxel-wise features only from certain ROIs that have been as-
sociated with dementia. We use the following ROIs (see Fig. 1):
1) Cingulate gyrus (CG), 2) hippocampus (HC) including amyg-
dala, 3) parahippocampal gyrus (PHG), 4) fusiform gyrus (FG),
5) superior parietal gyrus (SPG), 6) middle/inferior temporal
gyrus (MITG), 7) temporal lobe (TL) including FG and MITG,
8) HC + PHG, and 9) TL + HC + PHG. The choice of
these ROIs was based on those previously used for a similar
study [9].

III. EXPERIMENTS

A. Data

For the classification experiments, we used data from the
ADNI.1 The inclusion criteria for participants were defined in
the ADNI GO protocol.2 The ADNI was launched in 2003 by the
National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administra-
tion, private pharmaceutical companies, and nonprofit organi-
zations as a $60 million five-year public-private partnership.
The primary goal of ADNI has been to test whether serial MRI,
positron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. Determination
of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen clinical
trial time and cost.

The used cohort is selected based on the paper by Cuingnet
et al. [8] who published a list of subjects included in their study.
This cohort consists of AD patients, MCI patients that con-
verted to AD within 18 months (MCIc), MCI patients that did
not convert to AD within 18 months (MCInc), and CN. The par-
ticipants were 137 AD patients (67 male, age: 76.0 ± 7.3 yrs,
minimental-state examination (MMSE) score: 23.2 ± 2.0), 76
MCIc (43 male, 74.8 ± 7.4 yrs, MMSE: 26.5 ± 1.9), 134
MCInc (84 male, 74.5 ± 7.2 yrs, MMSE: 27.2 ± 1.7), and 162
CN (76 male, 76.3 ± 5.4 yrs, MMSE: 29.2 ± 1.0). Acquisition

1http://adni.loni.usc.edu.
2http://www.adni-info.org/Scientists/Pdfs/ADNI_Go_Protocol.pdf.

of the data was performed according to the ADNI protocol [29].
T1w imaging was acquired at 1.5 T with a voxel size of ∼1 mm3 .

B. Image Processing

Probabilistic tissue segmentations were obtained for white
matter, GM, and cerebrospinal fluid using Statistical Parametric
Mapping (SPM8, UK) [30].

We constructed a template space specifically for the used
dataset based on a subset of 150 T1w images (81 CN, 69 AD
[8]). To construct this template space, we derived the coordi-
nate transformations from the template space to the subject’s
space from pairwise registration of the images in the subset
[31]. We performed pairwise registrations with consecutively a
rigid (including isotropic scaling), affine, and nonrigid B-spline
transformation model. The nonrigid B-spline registration used
a three-level multiresolution framework with isotropic control-
point spacing of 24, 12, and 6 mm at the three resolution levels,
respectively. Registrations were performed with Elastix regis-
tration software [32] by maximizing mutual information [33]
within a brain mask [34]. A template image was created by av-
eraging the deformed individual images. To transform the other
subjects’ images to template space, coordinate transformations
were derived from pairwise registrations to the subset. The reg-
istrations to the template space were visually inspected to check
if they were correct. This template space construction is detailed
in [25].

We used multiatlas segmentation to segment brain masks and
the ROIs for the feature selection method based on prior knowl-
edge. The segmentations were performed for every subject indi-
vidually and, subsequently, transformed to template space. For
the individual multiatlas segmentations, we used 30 labeled T1w
images, each containing 83 manually segmented regions [35],
[36]. The brain masks of the 30 atlas images were obtained with
the brain extraction tool (BET) [34]. These brain masks which
were visually inspected, and BET parameters were adjusted if
necessary. The atlas images were registered to the subjects’ im-
age using a rigid, affine, and nonrigid B-spline transformation
model consecutively. The labels of the regions and brain masks
were fused using majority voting [37]. Using the definition of
[35], [36], the listed regions were combined to obtain the nine
ROIs defined in Section II-E. The numbers in brackets indi-
cate the number of GM-containing voxels, i.e., the number of
features within an ROI.

1) CG: CG anterior (supragenual) part right/left (r/l), CG
posterior part r/l, Subgenual anterior CG r/l, Presubgenual
anterior CG r/l (45870 voxels).

2) HC: HC r/l, Amygdala r/l (9325).
3) PHG: Gyri parahippocampalis et ambiens r/l (11736).
4) FG: Lateral occipitotemporal gyrus (gyrus fusiformis) r/l

(11115).
5) SPG: SPG r/l (110875).
6) MITG: Medial and inferior temporal gyri r/l (43156).
7) TL: Anterior TL medial/lateral part r/l, Superior tempo-

ral gyrus central part r/l, Medial and inferior temporal
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gyri r/l, Lateral occipitotemporal gyrus (gyrus fusiformis)
r/l, Posterior TL r/l, Posterior temporal lobe r/l (226908).

8) HC + PHG (21061).
9) TL + HC + PHG (245847).

C. Classification

For classification, we used features based on voxel-based
morphometry. The features were the GM probabilistic segmen-
tations in the template space that were modulated by the Jaco-
bian determinant of the deformation field. This modulation is
performed to take account of compression and expansion [38].
To correct for head size, features were divided by intracranial
volume. The features were normalized to zero mean and unit
variance.

Classification was performed with a linear SVM classifier
using the LibSVM implementation [39]. A high value was as-
signed to the SVM slack parameter (C = 105) resulting in a
hard-margin SVM classifier.

D. Experimental Setup

We compared seven feature selection methods. 1) Feature
selection on the SVM feature weights (W-map), 2) RFE on the
SVM feature weights (RFE W-map), 3) P-map feature selection
(P-map), 4) RFE on the P-map (RFE P-map), 5) Univariate t-
test for each voxel (T-test), 6) randomized t-test for each voxel
(T-map), and 7) ROI selection based on expert knowledge (ROI).
In each cross-validation run, features were selected based on the
training set. Using the selected features, an SVM was trained on
the training set and applied to the test set.

The feature selection methods were evaluated at a set of fixed
numbers of features to be selected. This set started from the
total number of features within the GM mask, which was then
iteratively divided by two, resulting in the following set: N ∈
{1406418, 803209, 351605, 87902, 43951, 21976, 10988, 5494,
2747, 1374, 687, 344}. To allow the hard-margin classifier to
find a solution, the number of selected features was not de-
creased below N = 344 keeping the number features higher
than or roughly equal to the number of samples. For RFE W-
map and RFE P-map, which are iterative approaches, the num-
ber of features to be eliminated in every iteration also decreased
logarithmically in 16 steps between the points of N .

Classification experiments were performed in four settings:
1) AD-CN, 2) AD-MCI, 3) MCI-CN, and 4) MCIc-MCInc. For
each setting, classification performance was quantified by the
area under the receiver-operating-characteristic (ROC) curve
(AUC) and accuracy with twofold cross validation. The cross
validation was iterated 100 times with random splits of the
participants into a training and test set of the same size while
preserving class priors.

We tested differences in AUC between classifiers with a
paired t-test using the 100 iterations as samples. The consis-
tency of the selected features was analyzed using heat maps
showing the frequency of the selected features over the cross
validations. We visually inspected the heat maps for N = 43951
on the axial slices for all methods simultaneously, paying spe-
cific attention to clusters of voxels that were selected more than

100 times. Computation times for the feature selection meth-
ods were measured in ten iterations of the AD-CN classification
with N = 43951.

IV. RESULTS

A. Classification Performance

Fig. 2 shows the AUC for each feature selection method for
different numbers of selected features (N ). Classification per-
formance was improved by feature selection in all classification
settings. For AD-CN classification, the AUC using all features
was 90.3% on average over the 100 iterations. This AUC was
significantly improved by W-map (up to 91.0% selecting 87902
features, p < 0.01), RFE W-map (up to 91.6% selecting 43951
features, p < 0.01), P-map (up to 91.1% selecting 87902 fea-
tures, p < 0.01), RFE P-map (up to 92.0% selecting 21976
or 43951 features, p < 0.01), and T-test (up to 90.4% select-
ing 351605 features, p < 0.01). For AD-MCI classification, the
AUC using all features was 68.5% on average. This was only
slightly but not significantly improved by RFE P-map (up to
68.6% selecting 175803 (p = 0.84) or 351605 (p = 0.88) fea-
tures). For MCI-CN classification, the AUC using all features
was 72.8%. This was improved only significantly by RFE P-map
(up to 73.5% selecting 87902 features, p = 0.02), and slightly
but not significantly improved by RFE W-map (up to 72.9% se-
lecting 175803 (p = 0.58) or 351605 (p = 0.69) features) and
P-map (up to 73.1% selecting 175803 features, p = 0.41). For
MCIc-MCInc classification, the AUC using all features was
61.3%. This was slightly improved by W-map (up to 61.5% se-
lecting 43951 features, p = 0.37), RFE W-map (up to 61.4%
selecting 43951 features, p = 0.49), and P-map (up to 61.4%
selecting 175803 features, p = 0.85). Overall, the largest sig-
nificant improvement, 1.7% increase in AUC, was achieved for
AD-CN selecting 21976 or 43951 features (∼1.5% or 3% of the
total) with RFE P-map.

Feature selection based on the significance map (P-map, RFE
P-map) methods performed slightly better than using methods
directly based on the SVM weight vector (W-map, RFE W-map).
This was significant in some cases (p ≤ 0.05): AD-CN N =
{21976, 43951}, AD-MCI N ≤ 21976, MCI-CN N ≤ 87902.
In few cases, the p-map methods performed significantly worse
than the w-map methods: AD-CN N ≤ 5494 (p ≤ 0.05) and
MCIc-MCI N = 2747 (p = 0.03).

The wrapper methods (RFE W-map, RFE P-map) yielded
generally a higher AUC than the filter methods (W-map, P-map).
Especially when a smaller number of features was selected, the
differences between the two approaches became larger. The dif-
ferences were significant (p ≤ 0.05) for AD-CN N ≤ 175803,
AD-MCI N = {687, 344}, MCI-CN N ≤ 1374. For MCIc-
MCInc N = {1374, 2747, 5494}, the wrapper methods per-
formed significantly worse than the filter methods (p ≤ 0.05).

In all settings, the methods based on the SVM weights had a
higher performance than those based on t-statistics. The AUC for
the SVM weight-based methods was significantly higher in most
experiments (p < 0.01): AD-CN for N ≤ 351605, AD-MCI for
all N , MCI-CN N ≤ 87902, and MCIc-MCInc N ≥ 10988. For
MCIc-MCI N = {687, 1374}, the SVM weight-based methods
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Fig. 2. Classification area under the ROC curve (AUC) as function of number of selected features for seven feature selection methods. The mean and standard
deviation of AUC are shown over 100 cross validations for (a) AD-CN, (b) AD-MCI, (c) MCI-CN, and (d) MCIc-MCInc classification.

were significantly worse than the t-statistics methods. The best
performing ROI, consisting of the HC, PHG, and the TL (ROI
9, 266908 features), did not improve AUC in any of the settings.
Its AUC was 90.0% for AD-CN, 64.8% for AD-MCI, 71.6%
for MCI-CN, and 60.9% for MCIc-MCInc classification. For
all classifications except for MCIc-MCInc, this ROI yielded a
significantly lower performance (p < 0.01) than all SVM-based
methods selecting 351605 features.

In addition to the AUC, we analyzed classification accu-
racy, which yielded slightly lower percentages than AUC (see
Appendix A, Fig. 4). The observed relations within and between
the accuracies of the methods were the same as those for AUC.

B. Evaluation of Selected Features

We evaluated which features were selected by analyzing the
heat maps showing the selection frequency of every feature. In
cross validation, a total of 200 feature sets were selected for
a given N by every method. Fig. 3 shows the heat maps for
the AD-CN classification when 43951 features were selected.
Although all methods selected large clusters of voxels in the
TL, the medial TL, in particular, visual inspection of the heat
maps for AD-CN showed some differences between the features
selected by different methods. The t-statistics methods (T-test,

T-map) selected voxels that were mainly concentrated in the TL,
while the SVM-weight based methods (W-map, P-map, RFE W-
map, RFE P-map) selected voxels more dispersed over the brain.
As mentioned, all methods frequently selected clusters of vox-
els in the TL (i.e., HC including amygdala, PHG, FG, MITG,
posterior TL), the insula, and the thalamus, but the t-statistics
methods did this more frequently, and selected larger clusters
in these brain regions than the SVM-weight-based methods.
The heat maps for SVM weight-based methods showed more
clusters of frequently selected voxels in the frontal lobe (su-
perior frontal gyrus, precentral gyrus, middle frontal gyrus),
postcentral gyrus, and CG than those for the t-statistics meth-
ods. We also observed several small differences between the
SVM-weight-based methods of which the most important was
that the p-map heat maps showed a more dispersed pattern over
the brain than the w-map heat maps. Other differences were that
the wrapper methods (RFE W-map, RFE P-map) selected more
clusters of voxels in the superior frontal gyrus than the filter
methods (W-map, P-map), and that the p-map selected more
clusters of voxels in the insula than the w-map methods.

Appendix B shows the heat maps for the other classification
settings. The patterns in these heat maps were similar to the AD-
CN classification, but more dispersed over the brain and less
pronounced in certain areas such as the TL. For most settings,
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Fig. 3. Heat maps of the selected features for the AD-CN classification by the following methods: (A) W-map, (B) RFE W-map, C) (P-map, (D) RFE P-map,
(E) T-test, and (F) T-map. In the 100 iterations of twofold cross validation, a total of 200 sets of features are selected, which are shown in the heat maps. The
sample point of 43951 selected features is shown.

like AD-CN, the voxels selected by the t-statistic methods were
mostly concentrated in the TL, and the voxels selected by the p-
map method were more dispersed over the brain. The AD-MCI
(see Fig. 5) classification was an exception to this, since in this
setting, the selected voxels were not only for the SVM-weight
methods but also for the t-statistics methods more dispersed
over the brain. For MCIc-MCInc (see Fig. 7), the heat maps
for all methods were quite flat with only few voxels that were
consistently selected.

As observed in Fig. 3, both the HC and the amygdala were fre-
quently selected for AD-CN classification by all methods and
the t-statistics methods in particular. For AD-MCI and MCI-
CN classification (see Fig. 6), more amygdala voxels than HC
voxels were selected by all methods, while for MCIc-MCInc,
this was opposite. For MCI-CN, we further noted that the
t-statistics methods selected fewer voxels in the insula than in
the other settings, but more voxels in the CG and in the rim
around the ventricles.

C. Computation Times

We measured computation times for the AD-CN classification
selecting 43951 features. On a training set of n = 149,150}, the
average time required for feature selection was W-map: 11.4
(range 10.5–13.9) s, RFE W-map: 5.5 (5.5–5.6) min, P-map:
6.7 (6.2–7.6) min, RFE P-map: 2.0 (1.8–2.4) h, T-test: 18.9
(17.9–20.1) s, and T-map: 5.6 (5.5–5.6) h

V. DISCUSSION

In classification experiments of AD, CN, and MCI subjects
based on structural MRI, we evaluated four feature selection
methods that used the SVM weight vector. Two of these methods
were novel because they used SVM significance maps as rele-
vance measure for feature selection in a filter and in a wrapper
approach. We compared these methods with more commonly
used feature selection methods using t-statistics and expert
knowledge ROIs.

A. Performance and Selected Features

In all classification settings (AD-CN, AD-MCI, CN-MCI,
and MCIc-MCInc), the evaluated data-driven feature selection
methods improved classification performance, while the meth-
ods based on expert knowledge did not. The performance im-
provement was the largest using RFE based on the SVM p-
map selecting 21976 or 43951 features for AD-CN, which
significantly improved the AUC from 90.3% to 92.0%. This
selection method also improved the other classifications: AD-
MCI 0.1% improvement in AUC (not significant), MCI-CN
0.7%, and MCIc-MCInc 0.1% (not significant). In general, the
SVM-weights-based methods performed better than those using
t-statistics. Of the SVM-weight-based methods, the ones using
the p-map instead of the w-map performed slightly better, while
RFE also slightly improved performance.
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In this study, we used the same ADNI cohort as used in the
comparison study of Cuingnet et al. [8]. Their study found an
AUC of 95% for AD-CN and 70% for MCIc-MCInc using a
voxel-based approach without feature selection (method: Voxel-
Direct-D-gm), which is somewhat higher than our results using
all features. These differences might be attributed to differences
in the methodology for template space construction [25]. Cu-
ingnet et al. [8] also evaluated two methods that included feature
selection and concluded that feature selection only improved
performance for the MCIc-MCInc classification.

The evaluated feature selection methods frequently selected
clusters of voxels in the HC, amygdala, and PHG. This is in
correspondence with the literature, as atrophy of these brain re-
gions is well known to play an important role in AD [40]–[42].
Additionally, atrophy in the cingulate gyri [41]–[43], caudate
nucleus [40], [41], insula [40], [41], thalamus [40], [43], SPG
(precuneus) [41], [43], temporal gyri [41], [43], and frontal cor-
tex [41] were reported in AD and MCI. The regions in which
the data-driven methods frequently selected clusters of features
roughly corresponded to these regions, which confirms the va-
lidity of these methods. The SVM-weight-based methods found
most of these regions, except for the caudate nucleus and the
SPG. In addition, the SVM-weight-based methods found a more
global effect than the t-statistics methods by selecting regions
dispersed over the entire brain.

The finding that classification performances were higher for
the SVM-weight-based feature selection methods than for the
t-statistics methods could be an indication that the classifier
benefits from selecting some voxels that seem to be randomly
distributed over the brain. If enough voxels in, for example, the
HC have been selected already, voxels from other brain regions
may have complementary information for the classifier, and may
therefore be more beneficial than other hippocampal voxels that
are possibly highly correlated with the hippocampal voxels that
were already selected. RFE should be better at selecting comple-
mentary features [16], which might explain why the SVM-based
RFE methods yielded somewhat higher performances than the
filter methods.

Guyon et al. [16] showed that a small change in the feature set
could result in a completely different feature ranking by RFE.
This possibly causes the selected features for RFE to be even
dispersed more over the brain than those for the filter methods.
Since the heat map for RFE P-map showed that there was a lot of
variation in the specific set of selected features, the performance
may be improved even more by making the method more robust
and less sensitive to small changes in the training set.

A paper by Chu et al. [9] found that feature selection only im-
proved classification performance when expert knowledge was
used. They compared an ROI method with three data-driven
methods: T-test, RFE W-map, which removed 3000 voxels in
every iteration, and a method using the average absolute t-value
in ROIs. In contrast this study, Chu et al. found for AD-CN and
MCI-CN classification improvement using some ROIs based on
prior knowledge, but no improvement using any of the data-
driven methods. The frequency maps shown in [9] for T-test and
RFE W-map show the same pattern as we found in this study.
For the T-test method, the selected voxels were concentrated in

the HC and medial TL, while the RFE W-map method showed
a more dispersed pattern of selected voxels. Our results suggest
that data-driven feature selection methods do have potential to
improve classification performance and are worth to be investi-
gated further.

The performance improvements due to feature selection
shown in this study could possibly be improved, e.g., by further
optimizing the proposed methods to make them more robust
or by exploring new methods. Such new methods could in-
clude feature reduction or regularization methods, for example,
one could incorporate principal component analysis [44], [45],
sparse regression [46], [47], or spatial regularization [48], [49].

B. Computation Time

Feature selection increases the time needed for training of
the classifier, but saves time in the application of the classifier
since it uses fewer features. The W-map and the T-test methods
were the fastest and only took 10–20 s. Significance map feature
selection is more time consuming than w-map feature selection,
and took a couple of minutes instead of seconds. The wrapper
approaches are more time consuming than the filter approaches
as they iteratively train a classifier. Of the evaluated methods,
the T-map method required the most time, up to 6 h, as it uses
permutations.

C. Challenges and Limitations

Although four classes (AD, MCIc, MCInc, and CN) are con-
sidered in the analysis, we performed all classifications between
pairs of classes because of better interpretability of the results.

For the experiments, we used a hard-margin classifier and
kept the number of selected features higher than the num-
ber of samples. When the number of features is much higher
than the number of samples, both soft-margin and hard-margin
SVM yield the exact same solution. In that case, the largest
Lagrange multiplier of the dual SVM equation is smaller than
or equal to the slack parameter C and the misclassification
penalty ξi does not have an effect. However, when the number of
features is smaller, the solutions of hard-margin and soft-margin
SVM differ depending on the used value for the C-parameter.
For N = 344, a C ≈ 1 or smaller would result in a soft-margin
classification. Since Chu et al. [9] concluded that the effect of
feature selection did not depend on value for the C-parameter,
we only evaluated feature selection using hard-margin classifi-
cation. Since the optimization of the C-parameter is generally
performed in a grid-search loop and is therefore computation-
ally expensive, using hard-margin SVM was also a pragmatic
approach.

Like most current studies into computer-aided diagnosis of
dementia, the reference standard for this study was based on
clinical diagnosis. For the ADNI data used in this study, this
clinical diagnosis is confirmed by a follow-up period of 18+
months. This may be a limitation, since the clinical diagnosis
[50] might not be always correct. The accuracy of the clinical
diagnosis has been reported to be 70%–90% compared to the
ground truth which was assessed postmortem based on neu-
ropathology [51]–[54]. However, due to the limited availability
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of data with ground truth diagnosis, we believe that the clinical
diagnosis is the best reference standard for current research.

In this study, we compared the performance of several feature
selection methods for a range of numbers of selected features.
For extension of this study, the number of features could be
optimized using grid search in cross validation on the training
data.

D. Implications

Although performance improvements were small, some of
the evaluated data-driven feature selected methods clearly were
better at ranking the features than others. The RFE methods
resulted in a better ranking than the filter methods, and the
SVM-weight based methods gave a better ranking than the
t-statistics methods. From these differences in results between
feature selection methods, we learned that data-driven feature
selection methods have potential, although we might not have
found the ideal method yet. For the choice of the best feature
selection methods, one should take into account the tradeoff be-
tween AUC and complexity. For some applications, a method
that requires a much smaller number of features to achieve sim-
ilar performance might be preferred. Finally, we note that it is
important to carefully choose the right method for feature selec-
tion as this can significantly reduce or improve the classification
performance.

VI. CONCLUSION

In this study, we showed that data-driven feature selection
methods can significantly improve computer-aided diagnosis
of dementia. Especially, RFE on the SVM significance map
works well but the performance improvement is still limited.
More research and more data with a ground truth diagnosis
is needed to further improve these methods for application in
clinical diagnosis systems.
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